1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
| from __future__ import print_function from tensorflow.keras.preprocessing.image import load_img, img_to_array import imageio import numpy as np from scipy.optimize import fmin_l_bfgs_b import time import argparse
from keras.applications import vgg16 from keras import backend as K
import os os.environ['KMP_DUPLICATE_LIB_OK']='True'
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
parser = argparse.ArgumentParser(description='Neural style transfer with Keras.') parser.add_argument('base_image_path', metavar='base', type=str, help='Path to the image to transform.') parser.add_argument('style_reference_image_path', metavar='ref', type=str, help='Path to the style reference image.') parser.add_argument('result_prefix', metavar='res_prefix', type=str, help='Prefix for the saved results.') parser.add_argument('--iter', type=int, default=10, required=False, help='Number of iterations to run.') parser.add_argument('--content_weight', type=float, default=0.025, required=False, help='Content weight.') parser.add_argument('--style_weight', type=float, default=1.0, required=False, help='Style weight.') parser.add_argument('--tv_weight', type=float, default=1.0, required=False, help='Total Variation weight.')
args = parser.parse_args() base_image_path = args.base_image_path style_reference_image_path = args.style_reference_image_path result_prefix = './training/' + args.result_prefix.split('/')[1] iterations = args.iter
total_variation_weight = args.tv_weight style_weight = args.style_weight content_weight = args.content_weight
width, height = load_img(base_image_path).size img_nrows = 400 img_ncols = int(width * img_nrows / height)
def preprocess_image(image_path): img = load_img(image_path, target_size=(img_nrows, img_ncols)) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = vgg16.preprocess_input(img) return img
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x
base_image = K.variable(preprocess_image(base_image_path)) style_reference_image = K.variable(preprocess_image(style_reference_image_path))
if K.image_data_format() == 'channels_first': combination_image = K.placeholder((1, 3, img_nrows, img_ncols)) else: combination_image = K.placeholder((1, img_nrows, img_ncols, 3))
input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0)
model = vgg16.VGG16(input_tensor=input_tensor, weights='imagenet', include_top=False) print('Model loaded.')
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
def gram_matrix(x): assert K.ndim(x) == 3 if K.image_data_format() == 'channels_first': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram
def style_loss(style, combination): assert K.ndim(style) == 3 assert K.ndim(combination) == 3 S = gram_matrix(style) C = gram_matrix(combination) channels = 3 size = img_nrows * img_ncols return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))
def content_loss(base, combination): return K.sum(K.square(combination - base))
def total_variation_loss(x): assert K.ndim(x) == 4 if K.image_data_format() == 'channels_first': a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1]) b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:]) else: a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :]) b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :]) return K.sum(K.pow(a + b, 1.25))
loss = K.variable(0.) layer_features = outputs_dict['block4_conv2'] base_image_features = layer_features[0, :, :, :] combination_features = layer_features[2, :, :, :] loss = loss + content_weight * content_loss(base_image_features, combination_features)
feature_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] for layer_name in feature_layers: layer_features = outputs_dict[layer_name] style_reference_features = layer_features[1, :, :, :] combination_features = layer_features[2, :, :, :] sl = style_loss(style_reference_features, combination_features) loss += (style_weight / len(feature_layers)) * sl loss += total_variation_weight * total_variation_loss(combination_image)
grads = K.gradients(loss, combination_image)
outputs = [loss] if isinstance(grads, (list, tuple)): outputs += grads else: outputs.append(grads)
f_outputs = K.function([combination_image], outputs)
def eval_loss_and_grads(x): if K.image_data_format() == 'channels_first': x = x.reshape((1, 3, img_nrows, img_ncols)) else: x = x.reshape((1, img_nrows, img_ncols, 3)) outs = f_outputs([x]) loss_value = outs[0] if len(outs[1:]) == 1: grad_values = outs[1].flatten().astype('float64') else: grad_values = np.array(outs[1:]).flatten().astype('float64') return loss_value, grad_values
class Evaluator(object):
def __init__(self): self.loss_value = None self.grads_values = None
def loss(self, x): assert self.loss_value is None loss_value, grad_values = eval_loss_and_grads(x) self.loss_value = loss_value self.grad_values = grad_values return self.loss_value
def grads(self, x): assert self.loss_value is not None grad_values = np.copy(self.grad_values) self.loss_value = None self.grad_values = None return grad_values
evaluator = Evaluator()
if K.image_data_format() == 'channels_first': x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128. else: x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128.
for i in range(iterations): print('Start of iteration', i) start_time = time.time() x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20) print('Current loss value:', min_val) img = deprocess_image(x.copy()) fname = result_prefix + '_at_iteration_%d.png' % i imageio.imwrite(fname, img) end_time = time.time() print('Image saved as', fname) print('Iteration %d completed in %ds' % (i, end_time - start_time))
|